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Aurélie C. Shapiro a,b,*, Hedley S. Grantham c, Naikoa Aguilar-Amuchastegui d, 
Nicholas J. Murray e, Valery Gond f, Djoan Bonfils g, Olivia Rickenbach h 

a WWF-Germany Space+Science, Reinhardtstr. 18, 10117 Berlin, Germany 
b Geography Department, Humboldt-Universität-zu-Berlin, Berlin, Germany 
c Wildlife Conservation Society (WCS), Bronx, NY, USA 
d Forest and Climate, WWF-US, Washington, DC, USA 
e College of Science and Engineering, James Cook University, Townsville, Queensland, Australia 
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A B S T R A C T   

Quantifying ecological condition, notably the extent of forest degradation is important for understanding and 
designing measures to protect biodiversity and enhancing the capacity of forests to deliver ecosystem services. 
Conservation planning, particularly the prioritization of management interventions for forests, is often lacking 
spatial data on forest degradation, and it is often overlooked within decision-making processes. We develop a 
continuous metric termed Forest Condition (FC) which aims to measure the degree of forest degradation on a 
scale from 0 to 100, incorporating the temporal history of forest change over any spatial extent. We parameterize 
this metric based on estimated changes in above ground biomass in the context of forest fragmentation over time 
to estimate a continuous measure of forest degradation for Congo Basin countries. We estimate that just <70% of 
Congo Basin forests remain fully intact, a decrease from 78% in the year 2000. FC was validated by direct remote 
sensing measurements from Landsat imagery for DRC. Results showed that FC was significantly positively 
correlated with forest canopy cover, gap area per hectare, and magnitude of temporal change in Normalized Burn 
Ratio. We tested the ability of FC to distinguish primary and secondary degradation and deforestation and found 
significant differences in gap area and spectral anomalies to validate our theoretical model. We apply the IUCN 
Red List of Ecosystems criteria to demonstrate the integration of forest condition to assess the risk of ecosystem 
collapse. Based on this assessment, we found that without including FC in the assessment of biotic disruption, 12 
ecosystems representing over 11% of forested area in 2015 would not have been assigned a threat status, and an 
additional 9 ecosystems would have a lower threat status. Our overall assessment of ecosystems found about half 
of all Congo Basin ecosystem types, accounting for 20% of all forest area are threatened to some degree, 
including 4 ecosystems (<1% of total area) which are critically engendered. FC is a transferrable and scalable 
assessment to support forest monitoring, planning, and management.   

1. Introduction 

Forest ecosystems provide essential ecosystem services to people, 
such as provision of food and materials, hydrological functions for clean 
supply of water, and home to numerous indigenous peoples (Díaz et al., 
2019). They are also at the forefront of global initiatives for the miti-
gation of greenhouse gas emissions, as conserving remaining intact 
forests is important for carbon sequestration and avoidance of future 

potential emissions (Jantz et al., 2014; Maxwell et al., 2019; Mitchell 
et al., 2017). Forests harbour unique and important biodiversity which 
underpins many of these functions, aligning with conservation efforts 
(Feeley and Terborgh, 2005; Stokstad, 2014) and intact forest ecosys-
tems are shown to have greater conservation benefits than degraded 
ones of similar ecological type (Betts et al., 2019; Haddad et al., 2015), 
making strong arguments for prioritizing them for conservation man-
agement (Watson et al., 2018). 
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Despite this value, forests are increasingly threatened by expanding 
human activities (Thompson et al., 2011; Venter et al., 2016). The 
degradation of forest can occurs through a process of fragmentation, 
which in turn impacts biodiversity, biomass, and therefore the ability of 
forest to provide many ecosystem services (Betts et al., 2019; Chaplin- 
Kramer et al., 2015; Haddad et al., 2015; Potapov et al., 2012). 
Although there is no standard definition of forest degradation (Ghazoul 
et al., 2015; Potapov et al., 2009), it has been acknowledged that de-
clines in forest intactness result in environmental and social problems 
which impact forest health, affecting human livelihoods and economic 
development (Foley et al., 2005; Pereira et al., 2010). Understanding 
and quantifying changes in forest fragmentation related to ecological 
condition is therefore crucial to monitor, manage and protect intact 
forests over time to prevent such problems (Brooks et al., 2006; Mit-
termeier et al., 2003). We define degradation via the term forest “con-
dition” between a state of maximum intactness and completely 
deforested using a combination of spatial patterns of fragmentation and 
ecosystem services, notably above ground biomass (AGB) as described in 
(Shapiro et al., 2016). 

Remote sensing can provide affordable, efficient, consistent multi- 
temporal measurements for forest monitoring, and assessment of for-
est condition when appropriately defined (Mitchell et al., 2017). The 
recent increases in the reliable use of satellite technology, as well as 
improved access to data and enhanced processing capabilities, are pro-
moting analyses of higher temporal resolution which enable improved 
assessments of forest degradation over time. Remote sensing approaches 
for forest degradation are generally grouped into direct and indirect 
approaches (Herold et al., 2011). There are advantages and disadvan-
tages to each approach which will vary by geography, resources avail-
able, and specific needs. Direct remote sensing methods estimate 
parameters such as spectral indices related to canopy gaps and structure, 
changes in forest canopies, or productivity in time series (DeVries et al., 
2015; Mitchell et al., 2017; Souza et al., 2005; Spruce et al., 2011; 
Verbesselt et al., 2012, 2010), although the implementation over a large 
area can be limited by image resolution or availability of time series or 
consistency between sensor types or climate effects (Cohen et al., 2010; 
Kennedy et al., 2010; Zhu, 2017) which can hinder the ability to 
compare variables in different geographies or climate regimes. Direct 
satellite measurements can also be affected by the complexity of 
defining degradation according to specific remote sensing indicators, 
and are more sensitive to forest dynamics, changes in vegetation, 
climate or even extreme events such as droughts, which may represent 
shorter term events which may be confused with degradation. In 
contrast, indirect methods employ the mapping of proxies, for example 
presence of roads, fires, forest edges or pattern (Broadbent et al., 2008; 
Chaplin-Kramer et al., 2015; Haddad et al., 2015; Potapov et al., 2008; 
Riitters et al., 2016; Shapiro et al., 2016; Tyukavina et al., 2016). These 
methods are particularly suitable for planning and monitoring, reporting 
and verification in developing countries with low field monitoring re-
sources (Bucki et al., 2012). Fragmentation and spatial pattern ap-
proaches are conceptually simpler, and being increasingly used in the 
development of reference levels and targets for emissions reduction 
programs, for example in Nepal (Forest Carbon Partnership Facility 
(FCPF), 2018). Indirect methods do however have their own limitations, 
which include of oversimplifying degradation processes, may not be 
sensitive to small-scale changes, and relies heavily on the quality of 
underlying datasets such as forest cover (Herold et al., 2011; Miettinen 
et al., 2014). 

There is a need for simple approaches for assessing and monitoring 
forest condition to provide a repeatable, transferrable and understand-
able indicator for regional conservation planning and prioritization for 
conservation, for example the intact forest landscape approach (Potapov 
et al., 2008), hinterland forests (Tyukavina et al., 2016), or the strati-
fication approach from (Bucki et al., 2012). These binary assessments 
are based on the application of hard thresholds (which may vary by 
geography or landscape) to discern degraded forests from intact, 

although forest degradation is in reality, a gradient of disturbance or 
impacts over time (Sasaki and Putz, 2009). An indicator that provides a 
continuous estimation forest condition could therefore provide a finer 
representation of this temporal, cumulative process. 

In this study, we build on previous research (Shapiro et al., 2016), to 
assess forest condition (FC) by developing analyses of key forest frag-
mentation and structure indicators over time. We first assess changes in 
forest spatial pattern, and then use available estimates of above-ground 
biomass (AGB) in strata defined by these spatial patterns to assign a 
continuous estimation of FC. FC is calculated by effects of fragmentation 
and increase in forest edges and associated impacts over time using 
relative changes in AGB. We apply a theoretical model to discern pri-
mary and secondary degradation from deforestation, and demonstrate 
how the results – a new forest condition metric – enable evaluations of 
the extent and severity of ecosystem degradation to assess forest 
ecosystem collapse under the IUCN Red List of Ecosystems categories 
and criteria (Bland et al., 2015; IUCN, 2016a; Rodríguez et al., 2015). 

2. Materials and methods 

2.1. Study area 

The Congo Basin forest ecoregion (Olson and Dinerstein, 2002) is 
comprised of tropical forests in the Democratic Republic of Congo 
(DRC), Republic of Congo (ROC), Equatorial Guinea, Gabon, Cameroon, 
Central Africa Republic and a small portion of Angola (Fig. 1). This 
represents the largest connected tract of forest in Africa, and the single 
largest peatland complex in the world, storing a significant amount of 
forest carbon (Dargie et al., 2017). The basin is highly biodiverse and is a 
focus of recent species discovery (Dargie et al., 2019; Hart et al., 2012), 
while more than 30 million people inhabit the basin, including indige-
nous communities with a long and intricate relationship to natural 
ecosystems (Riddell, 2013). Together these characteristics represent a 
unique ecological opportunity to mitigate climate, while supporting the 
livelihoods of the many communities who depend on essential natural 
resources. The relative lack of current geo-spatial information on forests, 
and few validation information from the ground due to lack of access or 
security, political instability; or widely distributed studies on land-use 
related impacts on forests and associated species biodiversity, for 
example in compared to the Amazon basin or Asian forests currently 
hinders successful management and conservation efforts in the context 
of needed sustainable development (Malhi et al., 2013). 

2.2. Data sources 

We developed a comprehensive dataset of relevant ecological, 
physical and forest data layers to evaluate FC for Congo Basin forests, 
explained in Table 1. This includes the assessment of biogeographically 
distinct forest ecosystems, best available data on AGB, and validation 
data such as canopy height, gap area and fractional cover derived from 
LiDAR, and Landsat derived normalized burn ratio (NBR). 

2.2.1. Congo Basin forest ecosystems 
To develop the forest ecosystem map we applied a number of pro-

cessing steps. First, we used forest cover data for terra firme forests from 
Philippon et al. (2018), which assessed phenology patterns and light 
regimes derived from MODIS (Moderate Resolution Imaging Spec-
trometer) to identify eight distinct forest types at 500 m resolution. To 
complete coverage of all forests in our study area we then identified 
open forests using data from Hansen et al. (2013), which were identified 
from treecover greater than 60% (in 2000) and outside the MODIS 
derived map. We integrated mangroves mapped by Giri et al. (2011) and 
lastly, swamp forest types by overlaying data from two sources, (Bet-
beder et al., 2014) and (Dargie et al., 2017), which together identified 
14 unique swamp forest types by flooding dynamics and dominant 
species (see supplemental material). We resampled our forest types data 
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to a common pixel resolution of 1 ha (100 m × 100 m). 
To better represent biogeographic patterns in forest types, we split 

our combined maps into regions defined by important bio-physical 
barriers which are known to have isolated distinct species (e.g. great 

apes) over many generations (Olson and Dinerstein, 2001; Takemoto 
et al., 2015). To represent these regions, we split areas east and west of 
the Congo River, and north and south of Ubangi river. We further 
distinguish sub-montane and montane vegetation according to eleva-
tions above 1100 m and 1750 m respectively (Verhegghen et al., 2012). 
Finally, we identified an area of Marantaceae dominated forests in the 
Republic of Congo based on expert input. The final product was a map of 
64 unique forest ecosystem classes for the year 2000 (see supplemental 
material for a list of all forest ecosystem types), which was updated to a 
second epoch of 2016 by removing all areas identified as tree cover loss 
by Hansen et al. (2013). The forest ecosystem maps for both epochs were 
used to create binary forest/non-forest masks for 2000 and 2016. 

2.2.2. Above ground biomass (AGB) 
Spatially-explicit AGB (Mg/ha) at the Congo Basin scale was sourced 

from the integrated pan-tropical dataset developed by Avitabile et al. 
(2016) at 1 km resolution. We further tested the index in the DRC using a 
finer scale national dataset calibrated by airborne LiDAR (Light Detec-
tion and Ranging; Section 2.4.1) and field data, extrapolated to the all 
DRC forests using wall-to-wall Landsat, ALOS PALSAR active radar and 
topography datasets as described in Xu et al. (2017). 

2.3. Developing a forest condition metric 

We estimated FC by combining forest fragmentation change and the 
relative loss in AGB for each transition between fragmentation classes. 
This process of anthropogenic deforestation encroaching on forest 
stands results in greater edges (Broadbent et al., 2008; Gascon et al., 
2000), and the relative AGB (in the absence of real-time carbon 

Fig. 1. The regional study area encompasses 6 countries in the Congo Basin. A national scale assessment focuses on the Democratic Republic of Congo (DRC). Major 
biogeographic boundaries are defined by the Ubangi and Congo Rivers. Green shows the primary tropical forest cover for 2016. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Datasets and descriptions and relevant article section.  

Data Source Description Section 

Data to derive FC 
Forest 

Ecosystems 
Philippon 
et al., 2018 

64 unique forest types determined 
by phenology, climate regime, 
flooding dynamics and bio- 
geographical zone 

2.2.1 

Hansen et al., 
2013 
Giri et al., 
2011 
Dargie et al., 
2017 
Betbeder 
et al., 2014 

Above Ground 
Biomass (AGB) 

Xu et al., 
2017 

National forest biomass dataset 
derived from LiDAR and satellite 
imagery for the DRC 

2.2.2  

Validation data 
Canopy height Xu et al., 

2017 
National airborne LiDAR dataset 
for the DRC 

2.4.1 

Forest gap area Xu et al., 
2017 

Derived from LiDAR canopy height 
following method of Betts et al., 
2019 

2.4.2 

Fractional cover Xu et al., 
2017 

Derived from LiDAR forest canopy 
height 

2.4.3 

Normalized Burn 
Ratio (NBR) 

Key and 
Benson, 2005 

Index derived from Landsat Tier 1 
imagery 

2.4.4  
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monitoring) of each of these fragmentation classes allows us to assess an 
indicator of forest structure ranging from a maximum theoretical intact 
state to completely deforested. To achieve this we assigned the forest/ 
non-forest mask from the two time periods (2000 and 2016) into frag-
mentation classes using Morphological Spatial Pattern Analysis (MSPA) 
from the GUIDOS toolbox (Soille and Vogt, 2009; Vogt and Riitters, 
2017). The edge distance has a significant impact on the resulting 
metric, and we use an edge distance of 300 m, which we consider an 
appropriate distance of satellite measurable impact into intact tropical 
forests (Harper et al., 2005; Shapiro et al., 2016). We reclassed bridges 
and loops to inner and outer edges based on their location on the 
boundary of interior or exterior non-forest patches respectively. Thus, 
forest cover in each time period is assigned into one of four fragmen-
tation classes: core, inner edge, outer edge and patch forest. We calculate 
the mean AGB in each fragmentation class of each ecosystem type. 

We then assess transitions in fragmentation classes from 2000 to 
2016 as a result of change in forest cover pattern, identified as areas that 
change from core forest to other fragmentation classes, identifying 
which forest pixels remain in the same class, versus transitions between 
different classes, which are assigned primary and secondary deforesta-
tion, primary and secondary degradation, as shown in Fig. 2. We discern 
two types of edges, inner perforations and outer edges bordering non- 
forest, as these have significantly different biomass (Shapiro et al., 
2016), and have also been shown to be a result of different anthropo-
genic land uses (Molinario et al., 2020). Similar subsequent categories of 
core and edge forest according to canopy height have been described in 
Brazilian rainforests (Silva Junior et al., 2020). 

The change in above-ground biomass between two time periods 
(2000 to 2016) was calculated from using a process analogous to the 
gain-loss method for carbon stock monitoring using the mean AGB of 
each fragmentation class of each forest ecosystem (Murdiyarso et al., 
2008). Gains and losses in AGB are calculated according to differences 
between fragmentation/forest ecosystem strata means (Shapiro et al., 
2016). 

We compute FC as a continuous metric from 0 to 100, based on the 
percentage change in biomass between classes as a proportion of the 
maximum potential AGB, thereby integrating the temporal dynamics of 
a forest area that is an indication of not only present state (one snapshot: 

degraded or not) but the state in a trajectory from intact to deforested. 
This transition is determined according to the proportion of AGB 
remaining in comparison to the mean AGB of the core forest class 
(maximum intactness). Relative FC was then estimated on a continuous 
scale from fully intact (100) to completely lost (0), based on the pro-
portional loss of biomass between fragmentation classes for two time 
periods. 

FC of the second time period j for each forest ecosystem is calculated 
using the following Eq. (1) 

Ctj = 100*(AGBtj/AGBti) (1)  

where c is the condition of that specific forest ecosystem fragmentation 
strata at any time t (denoted by tj), based on the AGB of the previous and 
current fragmentation category. 

To differentiate an ecosystem that has changed to a new state versus 
one that is stable, we assess overall Forest Condition (FC) using Eq. (2): 

FCtj = Ctj − (
AGBtj

AGBti
)*Ctj (2)  

2.4. Testing the FC metric in DRC 

2.4.1. Forest canopy height 
Forest canopy height was estimated using the airborne LiDAR dataset 

collected in 2014 and 2015 throughout the DRC following a systematic 
random sampling pattern, as described by the VCS VT0005 methodology 
(Tittmann et al., 2015; Xu et al., 2017). In total, 216 random plots of 
2000 ha each were distributed over a 1◦ × 1◦grid laid over the national 
primary dense forest cover dataset for DRC (Potapov et al., 2012). LiDAR 
data were collected with a mean point density of 2/m2 from which 
digital surface models and mean canopy height were derived at 2 m 
meter resolution (Xu et al., 2017). All canopy heights above 3 m (na-
tional forest definition) were used to create a detailed forest cover map 
for these LiDAR sampling areas, and further used to develop the vari-
ables described in the following two sections. 

2.4.2. Forest gap area 
Forest gap area was estimated using the difference between the 

LIDAR canopy height and a maximum estimated within a 50-cell 

Fig. 2. Theoretical concept of forest condition (FC) as 
a combination of AGB, deforestation and degradation 
transitions via fragmentation. A forest/non-forest map 
is classified into 5 fragmentation types (core, inner 
edge, outer edge, patch forest) which have decreasing 
levels of above-ground biomass (AGB) respectively 
and a greater presence of canopy gaps. The transitions 
between classes from one time period to the next are 
described in the top of the figure with an arrow that 
has a beginning point and an end, e.g. a change in 
core forest to outer edge is primary degradation. An 
inner edge forest that becomes non-forest is secondary 
deforestation. Stable forest types are primary forest 
(core forest with no change) and secondary forest 
(inner and outer edges, patch forests with no change).   
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window (or 1 ha, following Betts et al., 2019). Gaps were identified 
using a threshold of 21 m less than the canopy maximum, which located 
all gap areas within continuous forest, verified by the very high reso-
lution (10 cm) airborne imagery collected by the same airborne data 
collection campaign. The gap area was then summed for each hectare in 
the LiDAR footprints and sampled using the random sample of 100 
points per LiDAR plot. 

2.4.3. Fractional cover 
Forest fractional cover was estimated from the 2 m LiDAR-derived 

forest canopy height (Section 2.4.1) by summing the total number of 
cells in a 50 × 50 window and calculating the proportion of 2500 cells 
covered by forest to produce % forest cover at the 1 ha scale. 

2.4.4. Normalized burn ratio (NBR) 
We used the normalized burn ratio index (NBR; (Key and Benson, 

2005) as a direct remote sensing indicator of canopy disturbance asso-
ciated with encroachment and illegal logging (Langner et al., 2018). We 
calculated NBR from Landsat surface reflectance imagery from the USGS 
Tier 1 collection from 1984 to 2016 processed in Google Earth Engine 
(Gorelick et al., 2017). All available Landsat data since 1984 were 
compiled, filtered by cloud cover (<90%), poor quality pixels were 
masked according to pixel quality (Foga et al., 2017); and the image 
collected was sorted by acquisition date. We use a cumulative anomaly 
analysis to assess NBR in a monitoring period (2000–2016) compared to 
a baseline historical period (all previously available imagery from 1984 
to 1999), where all Landsat images are sorted in time, and the differ-
ences with the mean are sequentially summed and divided by the 
number of available images. From 2000 onward, coinciding with the 
first year of forest condition transition assessment, the difference be-
tween calculated NBR for each cloud-free pixel and the historical mean 
was calculated, summed, and normalized by the number of non-null 

observations as in Lagomasino et al. (2019). An area with a time 
period of high positive anomalies (higher NBR than historical mean) 
followed by subsequently larger negative anomalies, will have an overall 
high negative accumulated anomaly. 

We assessed the performance of FC and the theoretical framework in 
several ways for the DRC, for which we have detailed validation data 
Table 1). We correlated FC with fractional forest cover and canopy gap 
area, along with the estimate of biomass lost and the NBR cumulative 
anomalies. This was done using a random sample of 50 points distrib-
uted inside the fragmentation classes inside each LiDAR plot (n =
10,800) from (Xu et al., 2017) in order to assess forest structure vari-
ables of fractional cover and gap area, biomass lost and anomaly using a 
Pearson correlation matrix executed in R software (version 3.5.1). 
Negative cumulative anomalies of NBR (Section 2.4.4) were evaluated 
within each degradation class using analysis of variance (ANOVA) of the 
same random sample of points as above. These were further evaluated 
using the Tukey honest significant difference pairwise test (Bland and 
Altman, 1995) to determine significant differences between paired 
fragmentation transition classes. 

2.5. IUCN Red List of ecosystems assessment 

To estimate the risk of ecosystem collapse for each of the forest 
ecosystem types, we applied the IUCN Red List of Ecosystem criteria 
A2b, B1 and B2 and D (Bland et al., 2015) summarized in Table 2. The 
Red List of Ecosystems employ a rule-based protocol that utilises in-
formation on spatial change, range size, and biotic and abiotic variables 
for each ecosystem to identify ecosystems at risk of ecosystem collapse. 

Criterion A2b was applied to assess the reduction in geographic 
extent of each ecosystem over a 50-year period. We used the adjusted 
proportional rate of decline based on the extent data for two time pe-
riods, 2000 and 2016 (See Section 2.1.1). To assess the range size 

Table 2 
Summary of relevant IUCN Red List for ecosystems criteria applied in this assessment.  
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criterion B, we computed extent of occurrence as a minimum convex 
polygon encompassing all occurrences of each ecosystem (criterion B1) 
and area of occupancy using the 1% occupancy rule (criterion B2) and 
appropriate sub-criteria as described in (Bland et al., 2015). 

Criterion D focusses on the disruption of biotic processes (Bland 
et al., 2017), for which we applied the area of primary degradation (see 
Fig. 2) as the extent of the disruption, and the mean forest condition to 
indicate severity. Forest edges are known for their detrimental effects on 
ecosystems services and vertebrate habitats (Pfeifer et al., 2017), thus, 
making a fragmentation approach relevant for conservation prioritiza-
tion applications. Instead of the recommended 1750, we use the year 
1850 as the historical reference because prior to then forests in the 
Congo Basin were considered largely free of human disturbances and 
industrial development (Morin-Rivat et al., 2017). Both sub-criteria D2 
and D3 were evaluated to determine the validity of these assumptions. 

The change in FC over the 16 year study period was used as an in-
dicator of biotic disruption, as reduced AGB affects the delivery of 
ecosystem services such as climate change mitigation over time, (Hey-
mell et al., 2011; Pettorelli et al., 2018; Shvidenko et al., 2005). The 
change in amount of core forest versus edge classes determined the 
extent of the ecosystem affected by fragmentation, edge effects (Haddad 
et al., 2015) for criterion D3, while the changes in mean forest condition 
per ecosystem were used to assess relative severity of degradation for the 
severity. 

FC, by definition assumes that at some initial point in time, all forests 
were intact ecosystems with 100% condition, thus providing the infor-
mation needed to assess two of the sub-criteria D2a and D3. For D2a, we 
presume the rates of change of core versus edges determine the fraction 
of the extent of the ecosystem affected since 2000; and these are pro-
jected to 2050 using the proportional annual rate of decline (PRD; 
Rodríguez et al., 2015). For D3, we assessed the proportional rates of 
decline over the actual annual rates of decline (ARD) in mean FC by 
ecosystem which were modelled using the changes from 1850 to 2016, 
with the assumption that in 1850, all forest ecosystems were core intact 
forest with maximum potential biomass (Fig. 3). 

The final ecosystem status was assigned as the highest assessment 
outcome between all three criteria evaluated, A, B and D (See Fig. 4). 

3. Results 

3.1. Condition of Congo Basin ecosystems 

Our forest ecosystem map shows the Congo Basin forests cover more 

than 210 million ha in 2000 and are predominantly lowland, equatorial 
semi-deciduous forests with a significant swamp forest ecosystem in the 
central region covering more than 29 million hectares (See Fig. 5). 

The condition of these 64 forest ecosystems vary widely across the 
region. Overall we estimate that in 2000, 78% of all forest area was 
intact, core forest, decreasing to 67% in 2016 (intact forests shown in 
blue, Fig. 6) where more than 23 million hectares of core forest transi-
tioned to edge classes. For broad forest types, open forests and man-
groves have the lowest mean FC, while swamp forests and the mixed 
evergreen and semi-deciduous rainforests have the highest mean FC 
(Table 3). The localized Marantaceae forests have the highest mean 
condition. High condition forest (>80) is generally present in the dense 
forest ecosystems in Gabon, which have the highest mean forest condi-
tion, followed by Republic of Congo (Table 3). Large areas of lower 
condition (<50) are present in eastern DRC, along the Congo river and in 
the southwest corner of DRC, and south central Cameroon, while frag-
mented, low condition forests are predominant in the Central African 
Republic (See Table 4). 

3.2. Validating FC in the DRC 

Using the detailed LiDAR dataset for random sample plots in the 
DRC, (n = 21,600) FC was shown to be significantly, yet weakly 
correlated with fractional cover, gaps, biomass loss and NBR anomalies, 
with the greatest negative correlation with gaps and biomass loss 
(Fig. 7). The NBR anomalies also show the highest positive correlation 
with fractional cover, where greater negative anomalies are correlated 
with lower fractional cover. 

When assessing gap area by transition type, gap area decreases 
significantly for stable classes (primary and secondary forest), with the 
highest gap area observed in areas which were identified as primary 
deforestation (Fig. 8). Gap area was significantly different deforestation 
and degradation, but not statistically different to discern changes in 
primary or secondary types of forest. 

Mean cumulative negative anomalies were observed to be lowest 
overall in areas defined as primary or secondary deforestation, and less 
in degraded areas, and closest to zero in stable forest types with no 
change. All paired combinations were significantly different, with the 
exception of primary and secondary deforestation (See Fig. 9). 

3.3. Red list of ecosystems assessment 

Our assessment of the Red List of Ecosystem criteria indicates that 4 
ecosystems are critically endangered, 15 endangered, and 14 vulnerable 
(Table 5; Fig. 10). The remaining did not meet any of the category 
thresholds and are therefore listed as least concern. The full table of 
ecosystems and criteria are presented in the supplementary material, 
showing that criterion D, which was based on FC was also triggered 
when criterions A and B were, however, additional ecosystems met 
criterion D alone. 

The four critically endangered ecosystems are located in DRC, 
notably in and around the Virunga and Kahuzi-Biega National Parks 
(Fig. 10) are shown to have low condition, and experienced significant 
biomass loss and forest cover loss. DRC also hosts the majority of the 
endangered ecosystems, along the Congo River and in the west near 
Angola, along with the northern open forests. Central African Republic is 
dominated by fragmented, endangered open forests, and the Republic of 
Congo has large areas of vulnerable ecosystems. In the central cuvette, 
swamp forests are vulnerable in DRC and Republic of Congo. Several 
dense, evergreen and semi-deciduous forests in the northeast and 
northwest regions fall in the endangered categories, while three types of 
swamp forest ecosystems fall in the vulnerable category. 

Of the 33 ecosystems qualified as above least concern, 21 qualified 
for ranking in a category above Least Concern for criterion A or B as well 
as D, indicating general agreement between the criteria (Table 6). An 
additional 12 ecosystems were assigned a threat ranking according to 

Fig. 3. The correlation between forest condition estimated in 2015, and the 
assumed 100% condition in 1850, can be calculated using either annual rates of 
decline (ARD) or proportional rate of decline (PRD, adapted from (Rodríguez 
et al., 2015). 
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criterion D alone, meaning they did not undergo a significant change in 
extent, but rather extensive and significantly decreasing condition. 
These means that 11.6% of present forest ecosystems would have been 
missed as being categorized without applying FC. These ecosystems 
included several categories of open forests, which were assigned the 
higher threat class of endangered due to the extent and severity 
thresholds for criterion D, while all four critically endangered ecosys-
tems were assigned a higher risk class due to criterion D than A or D. In 
contrast, no ecosystems were assigned a threat status according to A or B 

alone, which is expected as reduced area is associated with a reduced 
core area. 

The trajectory of FC over time assessed differs for each ecosystem 
and Red List category. The critically endangered ecosystems are shown 
to decrease more rapidly after 2012, except for the evergreen/semi- 
deciduous ecosystem (upper most red line) which has a slower decline 
in FC over time, and its threat status mostly due to limited extent. The 
lowest lines represent the open forests which overall lower condition 
compared to other ecosystem types, as they are greatly fragmented and 
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Fig. 4. Congo Basin forest composition by region, forest type, elevation and climate. (Other forest types include mangrove and Marantaceae).  

Fig. 5. Distribution of forest ecosystem types of the Congo Basin. The codes indicate the hierarchical classification scheme and are explained in the supple-
mental material. 

A.C. Shapiro et al.                                                                                                                                                                                                                              



Ecological Indicators 122 (2021) 107268

8

as a result have a much lower than the maximum potential AGB. 

4. Discussion 

We identified 64 unique forest ecosystems that provide a funda-
mental basis for representative and comprehensive conservation plan-
ning in the Congo Basin region. Although forest cover is still quite 

extensive, the impacts of forest degradation and fragmentation are high 
(33% of overall forest area), reducing the capacity of forests to support 
biodiversity and ecosystem services. We found notable areas of degra-
dation in eastern mountains of DRC and southern, northern peripheries 
of semi-deciduous forests stands; the open forests of Central African 
Republic and southern Cameroon. Our forest condition index assesses 
the extent of degradation, which can be used within the Red List for 
Ecosystems risk classification framework. Through our analysis we have 
developed functional tools to support the RLE by defining ecosystems 
with reduced extent and significantly reduced condition. The applica-
tion of FC to evaluate potential ecosystem collapse has provided addi-
tional information than extent or size alone (criterions A and B) and 18% 
of forest area would not have been identified as threatened if it were not 
applied. 

We characterize FC as a combination of biomass lost and fragmen-
tation over time to produce a metric on a continuous scale from 0 to 
100%. In contrast with indicators that provide a single snapshot in time, 
binary assessments of intact versus not (Potapov et al., 2008; Tyukavina 
et al., 2016)or classifications of forest intactness (Molinario et al., 2015), 
FC has the unique element of incorporating a temporal dimension of 
biomass loss to produce a relative index of degradation on a continuous 
scale. This output allows an end user to decide their own classification or 
thresholding approach which could be specific to their geography. The 
integration of temporal information is an important requirement for 
accurately identifying the forest degradation process, and differentiating 
a regenerating secondary forest from one which is stable, or from one 
which may have previously been intact (Thompson et al., 2013). The 
overall approach to developing this metric lies in a specific definition of 
forest degradation based on AGB, related to the climate regulating ser-
vices of intact forest ecosystems (Pan et al., 2011). Therefore, the 
assessment of FC over time provides an important metric for monitoring 
forests capacity to either sequester or emit forest carbon over time, but is 
not limited to such use as it can be used to prioritize restoration efforts. 

FC was positively correlated with forest canopy fractional cover, 
biomass lost over time, and negatively associated gap area at 1 ha scale, 
validating the theoretical model of subsequent states of degradation 
presented in Fig. 2. The assessment of forest transitions (primary and 
secondary deforestation and degradation) gap area and cumulative 
anomalies of direct assessments of long-term changes in NBR provide 
more context in describing the successive forest states which lead to 
deforestation. The incremental significant differences point to an indi-
cator which can accurately discern deforestation from degradation, and 
the combination of temporal data with biomass allows for more infor-
mation than any of these variables alone. FC and transitions together 
provide an informative stratification for cost-effective conservation 
planning, monitoring and climate change interventions, as direct mea-
sures of forest gaps, fractional cover or direct remote sensing metrics 
alone do not inform the prior status of a forest ecosystem. High reso-
lution forest structure and gap area require significant investments into 
very high resolution airborne or drone data which are not always 
feasible. While fractional cover remains highly correlated with the other 
validation variables, fractional tree cover from satellite cannot 
adequately discern different forest heights or high or low biomass eco-
systems. Additionally, a forest with a continuous canopy will have the 
same fractional cover regardless of its biomass, structure, making it 
inadequate to independently assess relative degradation state. 

The Landsat observation frequency is not always ideal for wall-to- 
wall degradation detection, particularly before Sentinel-2, and higher 
resolution sensors such as Planet data have cost barriers and are less 
spectrally consistent than lower resolution sensors. While the method-
ology we developed for measuring forest degradation is an indirect 
method, incurring greater assumptions and over-simplification of pro-
cesses, they can be adapted and flexible to rapid monitoring assess-
ments. Indirect methods are generally simpler, but can provide the 
necessary information for conservation planning or targeting of in-
terventions (Grantham et al., 2020a, 2020b; Pelletier et al., 2013). We 

Fig. 6. Forest Condition for Congo Basin forests (2015). Protected areas data 
from (Pélissier et al., 2019) and WRI Forest Atlases (World Resources Insti-
tute, 2019). 

Table 3 
Mean FC by broad forest type.  

Broad forest type Total Area (ha) Mean FC Std. dev. 

Dense evergreen rainforest 4,457,859  82.13  32.24 
Evergreen and semi-deciduous 

Rainforest 
18,177,916  89.92  25.99 

Semi-deciduous rainforest 104,332,094  85.24  30.38 
Semi-deciduous rainforest with pioneer 22,453,096  75.14  38.05 
Marantaceae 267,717  91.71  20.81 
Swamp forest 28,928,944  85.88  32.02 
Mangrove 402,780  64.71  40.51 
Open forest 31,239,177  18.93  15.22  

Table 4 
Mean FC by congo basin country.  

Country Total Area 
(ha) 

Forest area 2015 
(ha) 

Mean 
FC 

Std. 
dev. 

Cameroon 47,177,546 21,686,790  75.21  36.41 
Central African 

Republic 
62,889,075 11,385,949  45.47  39.32 

Republic of Congo 34,220,955 23,701,530  84.91  31.97 
Equatorial Guinea 2,701,407 2,594,197  77.27  35.99 
Gabon 26,489,820 23,939,932  85.94  29.98 
Democratic Republic 

of Congo 
234,751,788 126,437,088  73.25  38.58 

Angola 712,269 514,097  52.46  43.05  
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have demonstrated that the integration of temporal information can 
differentiate primary from secondary deforestation where a direct 
spectral measure or estimation of fractional cover cannot. 

Our validation shows that FC is correlated with decreasing gap area, 
increasing canopy height and cumulative NBR anomalies, supporting 
the theoretical framework and transition definitions proposed in Fig. 1. 
Tukey HSD pairings of differences in mean canopy gap, and anomalies 
are significantly different, with the exception of primary and secondary 
deforestation, which were not significant in the paired variable tests. 
This is not entirely unexpected, as a deforested ecosystems are similar 
whether it was previously intact or already degraded. For this reason, FC 
provides important contextual information, to differentiate the differ-
ences in subsequent degradation transitions from stable secondary or 
degraded forests and provides a suitable indirect method to meet most 
monitoring needs. 

For direct remote sensing approaches to degradation, indicators 

directly related to canopy changes are necessary (Mitchell et al., 2017). 
To validate our approach, we chose NBR as a suitable index to detect 
pixel components of bare soil within tropical forests, an indicator of 
canopy closure and does not suffer from the saturation effects of NDVI, 
or the calibration required for spectral mixing approaches (Langner 
et al., 2018). The presence of bamboo understories or deciduous species 
in the forest community, however, could falsely detect canopy openings, 
however a long term cumulative anomaly approach, in which increases 
in NBR cancel out decreases should effectively remove seasonality and 
discern long term changes. Despite a suitable direct indicator, cumula-
tive NBR anomalies alone cannot discern degradation events which may 
be followed by quick regeneration, nor does it differentiate between 
different types of forest dynamics. An assessment of trends, for example 
using LandTrendr (Kennedy et al., 2010), might be required to investi-
gate various transitions, but still aren’t designed to assess the relative 
changes occurring in primary or secondary forest types, or elements 

Fig. 7. Correlation matrix of sampled 
variables including ecosystem condition, 
fractional cover at 1 ha (F Cover, Section 
2.4.3), Biomass loss (Mg/ha, Section 
2.2.2) and the NBR Anomalies Section 
2.2.6. The distribution of each variable 
is shown on the diagonal, bivariate 
scatter plots on the lower left, and the 
correlation coefficient shown as a value. 
Significance levels are denoted by red 
stars (3 stars: p < 0.001; 1 star: p <
0.05). (For interpretation of the refer-
ences to color in this figure legend, the 
reader is referred to the web version of 
this article.)   

Fig. 8. The relationship between gap area per hectare and transition type (left), and Tukey’s HSD comparison of means, (right). Bold indicates significant difference 
between pairs. The color scheme matches the transitions in Fig. 2, and from (Shapiro et al., 2016). (pdef = primary deforestation; pdeg = primary degradation; pfor 
= primary forest; sdef = secondary deforestation; sdeg = secondary degradation; sfor = secondary forest). 
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correlated to AGB, as these require consistent long term cloud-free time 
series data and calibration information that remain sensitive to short 
term dynamics. 

FC can also support conservation prioritization and planning in many 
ways. Our approach can integrate a flexible number of time steps 
(minimum of two to incorporate the temporal dimension) but can be 
calculated over subsequent annual time series (Fig. 11) which can sup-
port adaptive monitoring or alert approaches, for example, identifying 
when an ecosystem FC dips below a certain threshold. This method has 
also supported the prioritization of forest areas for high conservation 
value assessments (Grantham et al., 2020a, 2020b) or via the ecosystem 
Red List addressed in further detail in the next section. We observed 
varying estimates of FC for individual ecosystems, where areas with 
lower condition may be prioritized for restoration activities, while those 
with high overall condition could be managed for conservation and 
carbon stock maintenance. 

In comparison with binary indices such as Intact Forest Landscapes 
(Potapov et al., 2008), hinterland forests (Tyukavina et al., 2016), 
methods identifying core and edge (Haddad et al., 2015; Riitters et al., 
2016), or approaches classifying post-deforestation changes and land 
use (Molinario et al., 2020, 2015), FC provides a continuous index which 
has parameters which can be adjusted and applied according to specific 
needs or geographies. This is important for adapting the method to 
different context or forest types – although we do note that our metric 
might be biased towards continuous forest types, for example dense 
forest stands, as opposed to naturally open forests which are patchy in 
nature. 

Our results are supported by analyses such as Molinario et al. (2020) 
who have defined different land cover trajectories and impacts for 

different edge types (inner versus outer). In particular in the Congo 
basin, FC identified many forests which happen to fall outside the IFL 
definition yet are the locations of essential corridors, valuable species 
habitats, or are identified as Key Biodiversity Areas (KBAs) (Birdlife 
International, 2018; IUCN, 2016a, 2016b). In addition, we provide a 
continuous metric integrating the temporal history supporting conser-
vation prioritization and methods to rank areas by FC for different in-
terventions – such as active restoration or mitigation activities to 
promote regeneration (Grantham et al., 2020). 

4.1. Application to IUCN Red List of ecosystems 

The application of FC for Criterion D of the IUCN Red List enabled us 
to assess the disruption of biotic processes over a large region, assessing 
both spatial extent of impact and the severity, which could be otherwise 
difficult to measure or estimate, for example biotic processes related to 
the loss of species richness, or changes in trophic diversity (see supple-
mentary material of (Bland et al., 2015). We found that we would have 
under-estimated ecosystem risk by assigning the Red List category based 
only on the geographic extent and area of occupancy by applying cri-
terion A and B only. The additional element of FC is necessary to assess 
ecosystem status independent of spatial extent. As our analysis has 
shown, 12 of the 64 ecosystems, representing more than 11% of total 
forest area in 2015 did not meet the risk criteria for A or B, but were 
triggered by criterion D, while no ecosystems were classified at risk with 
only A or B. This was observed in all open forest categories in dryland 
ecosystems which despite their very fragmented state can still poten-
tially harbour high AGB (Bastin et al., 2017). This high potential AGB in 
a very fragmented forests results in low FC and triggers extent and 

Fig. 9. Magnitude of cumulative anomaly by transition type (left), and Tukey’s HSD (right). Bold indicates significant difference between pairs. The color scheme 
matches the transitions in Fig. 2, and from (Shapiro et al., 2016). (pdef = primary deforestation; pdeg = primary degradation; pfor = primary forest; sdef = secondary 
deforestation; sdeg = secondary degradation; sfor = secondary forest). 

Table 5 
Redlist of Ecosystem summary for 64 Congo Basin Forest Ecosystems.  
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severity of criterion D, while their large geographic distribution do not 
trigger criterion A or B. This shows that A and B do not adequately 
integrate fragmentation and pattern to assess ecosystems. It is also 
possible that these naturally fragmented forests are under-estimated by 
our metric focused on connectivity, meriting further attention. We do 
ultimately demonstrate that criterion D captures the ranking of several 
criteria and is an effective indicator for the ecosystem risk assessment, in 
both extent (calculated as % core forest) and severity (measured by 
mean confition), as opposed to A and B which are focused primarily on 
extent. As ecosystem functioning, notably species biodiversity greatly 
affected by fragmentation (Haddad et al., 2015), it is logical and 
necessary to include spatial pattern metrics in an ecosystem risk 
assessment designed for conservation. The FC estimate directly ad-
dresses the concept of the endpoint (FC = 0) of ecosystem decline, 
supporting the scientific underpinning of the ecosystem red list process 
(Keith et al., 2013) and can also be applied to other ecosystem priori-
tization efforts for conservation. Finally, this assessment has shown that 
that the principal driver of ecosystem collapse in Congolese forest sys-
tems are related to fragmentation and degradation, and while defores-
tation overall may remain low, there are significant pressures that can 
affect forest health and associated biodiversity (Grantham et al., 2020a, 
2020b). 

The availability of temporal data and trends over annual time steps 
enables a forward and backward modelling to fit the criteria re-
quirements of estimating changes in FC over 50 years past or future 
predictions. Most importantly, the method has enabled the identifica-
tion of critically endangered ecosystems among the large extensive 
forests in the Congo Basin. In particular, the montane and sub-montane 
forests identified as critically endangered are already limited in extent 
and have suffered deforestation and degradation, and are home to the 
Eastern Chimpanzee and Eastern Gorilla habitat, which are endangered 
and critically endangered species on the IUCN Red List respectively 
(IUCN, 2019). These habitats are presently within iconic protected areas 
such as Virungas National Park, which have undergone recent forest loss 
and threats from oil development, demonstrating the limits of formal 
protection and World Heritage status in a situation of political insta-
bility, high levels of poverty, and conflict (Hochleithner, 2017; United 

Nations Economic Commission for Africa, 2015). The other critically 
endangered habitat identified is currently unprotected and lies between 
several mining concessions which might present acute threats in the 
future (Pélissier et al., 2019). Additionally, particular consideration 
should be given to ecosystems in endangered and vulnerable categories 
which lie along southern edge of the dense forest ranges. These are likely 
naturall more fragmented open forests, making them moer susceptible 
to encroachment by humans and are present among mixed agricultural 
landscapes and could be sites to focus restoration activities. 

5. Limitations 

All metrics or approximations such as indirect methods or proxies 
come with the risk of oversimplifying or missing crucial detail that one 
might observe with direct methods, or for example observing forest 
degradation events with very high-resolution imagery. FC relies on ac-
curate forest cover maps, which are not always possible with limited 
validation or available quality data, or at regional scales that can be 
affected by varying forest definitions. For example, the global forest 
cover maps from Hansen et al. (2013), which are most often used due to 
access, consistency, resolution, can be difficult to harmonize at the 
regional global scale because the forest cover threshold varies by lati-
tude, along with different country definitions of forest (Romijn et al., 
2013). For this reason, we developed forest ecosystem maps integrating 
data from various sources and validated with expert opinion to limit bias 
from one dataset. 

FC is a relative index based on biomass estimations, which will al-
ways include an element of uncertainty. We overcome this by not using 
AGB data directly, but rather averaged over forest strata, which should 
minimize any large errors or inconsistencies, unless most of the 
ecosystem is already degraded. We base our assessment on the 
assumption that the maximum potential biomass is present in intact, 
core forest – this can be hindered by the quality of the AGB map, or 
ecosystems that are so severely degraded that no core forest area exist. 
Additionally, as the changes in biomass are relative, the actual biomass 
estimates do not necessarily bias the final condition estimate to a great 
extent – if biomass is generally over or under-estimated the condition 
value is not affected. Next, the estimate of maximum potential FC de-
pends on the biomass of forest types at an initial, presumably intact 
state. For forest types which are already degraded or have low biomass 
initially based, subsequent condition estimates will be related. For this 
reason, we recommend that the forest condition index in tandem with 
the transition classes to adequately identify the current state in the po-
tential degradation time series. 

5.1. Future work/implications 

Detecting changes in forest cover condition and degradation alone 
does not meet all the needs for management in the face of increasing 
population and threats, and new drivers of changing climate. A further 
step in the analysis is to undertake a geo-spatial assessment of drivers of 
degradation, to support better land planning and mitigation strategies. 
An assessment of shifting cultivation drivers and change is provided by 
Molinario et al. (2015) which adds a further relevant level of refinement 
to assign types of transitions to drivers or assess post deforestation land 
covers. A more in-depth analysis of the complex interactions and 
changes in drivers over time could provide a finer assessment to manage 
the causes of deforestation in DRC and define and project future risks 
and scenario assessment. 

6. Conclusions 

The outlined approach to assessing FC has provided a consistent and 
repeatable tool for evaluating forest over time allowing us to distinguish 
stable, degenerating and regenerating forest via a continuous metric, 
according to a biomass definition of forest degradation. We have shown 

Fig. 10. IUCN Red List assessment for Congo Basin forest ecosystems. (For 
interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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Table 6 
Ecosystem Red List assessment for 64 Congo Basin Forest Ecosystems based on criterion A2b, B1 and B2 and D.  

(continued on next page) 
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Table 6 (continued ) 

 32130 10,705,279 10,592,702 94.12 5.23 1,166,921 4396 14.98 14.22 8.27 5.88 LC 
 32140 3,190,203 3,136,105 83.83 7.68 1,019,159 3006 44.24 38.61 22.30 16.17 LC 
 32220 810,449 783,165 85.19 14.73 428,420 560 48.36 39.39 21.77 14.81 LC 
 32240 10,654 10,557 82.60 5.10 200,429 35 47.46 36.06 29.31 17.40 VU 
 32320 208,448 192,664 63.42 33.72 110,475 197 76.22 73.76 43.57 36.58 VU 
 32340 2,116 2,103 72.88 3.45 18,753 5 49.69 48.41 36.81 27.12 EN 

Semi-
Deciduous with 

Pioneer 

42120 3,213,222 2,949,922 74.20 34.01 489,205 1677 60.99 57.02 34.68 25.80 VU 

42130 17,198,872 16,027,875 78.18 28.97 1,194,308 5693 43.40 43.08 30.27 21.82 LC 

42140 2,467,033 2,342,183 59.96 22.49 869,131 1485 73.78 72.83 47.95 40.04 VU 
 42220 349,164 316,814 58.47 35.93 300,419 410 83.70 77.44 55.43 41.53 EN 
 42230 922 901 80.32 12.73 10,118 1 39.35 21.75 81.24 19.68 CR 
 42240 6,468 6,351 71.81 9.67 41,384 20 62.28 59.80 34.52 28.19 VU 
 42320 180,406 160,827 42.89 45.23 167,140 208 89.20 88.59 66.03 57.11 CR 
 42340 2,334 2,291 76.70 9.58 6,542 3 67.44 54.46 33.85 23.30 EN 

Swamp Forest 63151 4,537,018 4,068,227 70.64 42.14 376,553 2433 74.67 67.72 38.91 29.36 VU 
 63152 6,036,564 5,945,728 92.42 7.41 369,866 2447 25.52 22.60 9.63 7.58 LC 
 63153 1,783,496 1,753,679 89.16 8.00 380,728 1571 32.24 28.34 14.52 10.84 LC 
 63154 817,340 801,088 69.32 9.29 368,573 909 49.86 50.93 39.79 30.68 LC 
 63155 1,033,979 1,023,902 91.32 5.11 266,923 896 29.38 25.94 10.55 8.68 LC 
 63156 1,548,171 1,540,305 94.45 2.72 266,485 824 19.38 16.73 6.97 5.55 LC 
 63157 311,196 307,660 86.97 5.92 251,245 386 33.06 30.52 18.05 13.03 LC 
 63161 1,671,255 1,498,735 70.73 41.92 480,285 1190 72.39 65.72 39.41 29.27 VU 
 63162 4,642,848 4,541,822 89.57 10.07 490,315 1842 32.90 29.59 13.29 10.43 LC 
 63163 3,205,778 3,164,469 91.21 5.84 490,983 1652 25.38 22.87 11.41 8.79 LC 
 63164 1,142,687 1,124,208 68.33 7.22 457,531 959 51.62 49.48 40.53 31.67 VU 
 63165 554,484 546,680 92.41 6.44 288,024 691 25.78 22.84 9.53 7.59 LC 
 63166 2,014,147 2,003,064 96.19 2.72 292,569 870 13.08 11.65 4.73 3.81 LC 
 63167 209,992 206,923 83.96 6.59 292,902 396 35.04 33.51 21.01 16.04 LC 

Open Forest 81110 9,077,498 8,912,775 19.40 8.12 1,623,726 6243 55.48 88.32 96.92 80.60 EN 

81120 7,915,813 7,287,374 21.79 31.61 1,051,266 4280 66.17 76.39 97.38 78.21 EN 
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that the amount of intact forest in the Congo Basin has decreased from 
78% in 2000 to 67% in 2016 with over 24 million hectares of forest 
degraded in that time period. FC is inversely correlated with canopy gap 
density, and positively correlated with cumulative NBR anomalies. We 
demonstrate the application for ecosystem Red Listing, using FC to 
identify potential ecosystem collapse, and found 4 critically endangered 
forest ecosystems in the DRC. We demonstrate that for understanding 
the threatened status of ecosystems, quantifying condition can be just as 
important as understanding its change in extent or rarity. We propose to 
integrate FC into future conservation assessment and prioritization 
approaches. 
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